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Abstract

We have investigated the size-dependent stability and structure of ben-

zene, aluminum-benzene, and vanadium-benzene clusters. Motivated by gas-

phase experimental studies performed by an experimental collaborator, we have

used first-principle electronic structure methods to identify the structure of

Al+(Bz)n, V +(Bz)n, and Bzn clusters. Our studies reveal that cationic aluminum-

benzene clusters have a magic number of 13, and that its high stability may be

understood by analyzing the structure of the cluster. We also investigate the

structure of vanadium-benzene clusters which have a magic number of 2. Here

I examine the benzene-cation and benzene-benzene interactions that lead to

these magic numbers, as well as their geometric shell structures and their for-

mation/solvation.
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Chapter 1

Introduction

Studies of the metal-benzene clusters is an extremely promising area of re-

search as it can provide a fundamental understanding of the role of intermolec-

ular and ion molecular interactions in governing the molecular arrangements in

solutions and solids.[1, 2] Aromatic interactions are important in many materials

and in biological systems motivating the need for highly accurate understand-

ing of these weak interactions. Such an understanding is needed for a molecular

insight into processes including solvation of ions by molecular clusters and ion-

induced nucleation. Studies of the gas phase clusters is an important area as

one can change the relative proportion of the ion-molecular and inter-molecular

interactions by changing the size and the charged state.[3] One of the funda-

mental questions that we address is how a combination of such interactions can

lead to unusually stable clusters.

For metal clusters, it is well known that small clusters exhibit “magic sizes”

that appear as the peaks in the abundance spectra of the clusters generated in

molecular beams. The origin of the “magic clusters” is generally understood

within a model of the confined nearly free electron gas. Here, the electronic
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states are grouped into shells, much in the same manner as in an atom or as

in a nucleus within the nuclear shell model. When the electron count is such

that the electronic shells are filled, the cluster exhibits enhanced stability and

chemical inertness. These features have given rise to the concepts of superatoms

as stable clusters that can mimic the chemical characteristics of atoms in the

periodic table. As we will show, the mass spectra of ionized clusters composed

of a metal atom surrounded by benzene molecules also exhibit sizes that are

particularly stable (have higher mass intensity) compared to the neighboring

sizes. Benzene is not a metal and the metal benzene clusters do not constitute

a nearly free electron gas. Benzene, as we will show, do however does have a

quadrupole moment. How does then the combination of metal-benzene and

benzene-benzene interactions lead to unusually stable species? The present work

is directed to answer some of these fundamental questions.

1.1 Background and Applications

Benzene clusters are agglomerations of 2 or more benzene molecules, and serve

as an intermediate phase between that of a liquid and a gas. Benzene clusters are

a particularly difficult type of cluster to study because the binding between the

benzene molecules is weak, and the interaction is driven by non-covalent interac-

tions that are difficult to evaluate using first-principles methods. An additional

challenge is that the experimentally observed benzene clusters are usually ions,

because neutral benzene clusters cannot be analyzed using mass spectroscopy.

Force field methods for determining the structure can be done for neutral ben-

zene clusters, however finding an accurate force field model for the ionized ben-

zene cluster is challenging. The alternative is to use first-principles methods,
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however delocalization error leads to the accuracy of these first-principles cal-

culations to be poor. To overcome these difficulties, we have performed a com-

bined theoretical and experimental study on metal-benzene cation clusters. The

electron hole is localized on the metal ion, so first-principles methods on these

systems are more accurate than in ionized plain benzene clusters. This allows

us to analyze the structure, stability, and origin of stability of metal benzene

clusters, and compare our results with experiments to test our hypotheses. This

means that metal-benzene clusters are an ideal model system to study and an-

alyze the difficult non-covalent interactions between benzene molecules.

A more applied reason for studying these systems include the role of metals in

the breakdown of fuels. Metals may be used in a wide variety of catalysts, and

the interaction between metals ions and aromatic hydrocarbons such as benzene

may play an important role in their activity, coking, and breakdown. Interest

in this topic is in part due to the increasing need for efficient aircraft engines

that cost less fuel to run. There are several factors that contribute aircraft

fuel burning efficiency, and it has been found that benzene and soot are good

tracers for the inefficiency (if benzene levels drop, efficiency increases). Finding

out how benzene clusters interacting with one another and with other emissions

(like metals) can help to better understand what we can do to increase the fuel

burning efficiency [4].

In a plain benzene cluster the benzene-benzene interactions alone are weak, but

adding an aluminum or vanadium atom to that cluster we find that the benzene

interacts much more strongly with the metal than with other benzenes. In the

aluminum-benzene clusters we investigated, the benzene forms solvent shells

around the aluminum and is much more strongly bound to the metal core than

to other benzenes, and this is shown experimentally as well. This is character-

istic of a charge transfer complex where for example a cationic core is a good
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acceptor for surrounding benzenes to donate charge to. The benzene molecule

has charge distributed unevenly giving it more negative faces than sides so that

the most likely place that it would donate charge from is in fact its face which

we confirm in our investigation. In vanadium-benzene clusters we found an

expected sandwich covalent bond at the core of the cluster and then in larger

clusters the same as aluminum where they primarily faced the center.

1.2 Magic Numbers

Magic species or their corresponding magic number is caused by a particular

cluster having unusually high stability relative to other sized clusters. Depend-

ing on the experimental conditions the stability may be caused by energetic

stability, geometric shell closure, electronic stability, or chemical stability. The

origin of this stability may have many different causes depending on the sys-

tem. We emphasize that the origin of stability in solvent clusters like water

and benzene are quite different than the well-known magic numbers in metallic

clusters. The identification of highly abundant, “magic” species in the mass

spectra of clusters have proven valuable in nanoscience, leading to the discovery

of fullerenes, and the electronic shell structures of metallic clusters. This con-

cept originally comes from the nuclear shell model wherein certain numbers of

nucleons in the nucleus have higher binding energies than other numbers of nu-

cleons. The binding energy is largely attributed to the geometry of the nucleus

and these magic numbers can be thought of as the numbers that hard spheres

may find they fit closest together in. Energetically the preference of nuclei to

these magic numbers can be thought of as the preference of electrons to fill or

empty valence shell orbits. Magic numbers may come from a variety of different
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kinds of interactions, and in this work we are most interested in the interactions

between large molecules such as benzene and metals.

1.3 π Bonding and Benzene’s π Orbitals

In regular covalent bonding we see valence electrons orbitals overlap so that

the atoms involved with the bonding effectively share electrons. π bonding is

a type of covalent bonding where the p orbitals interact with other p orbitals

above and below the plane that contains the two atoms.

Benzene is a planar aromatic molecule made up of 6 carbons and 6 hydrogens

forming a regular hexagon. The sides are all of the same length even though

some sides are often thought of as double bonds. This is because half of the

electrons forming C-C bonds are actually delocalized in torus shaped clouds

above and below the faces of the benzene hexagon. These are called π orbitals

since they are formed from π bonds between each of the p-orbitals of the carbon

atoms. The π orbitals are in their lowest energy state when all of the p-orbitals

are in phase with one another; their wave functions constructively interact giv-

ing the continuous torus shaped electron density cloud.

1.3.1 Quadrupole Moments

Quadrupole moments occur when the charge is unevenly but symmetrically

distributed through a molecule. Usually monopole and dipole interactions are

much stronger than quadrupole interactions so that the quadrupole moment is

of little importance; this is not the case for benzene however. To explain the
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quadrupole moment of benzene it is best to first visualize a simpler model, CO2

for example.

In the linear molecule CO2, the electrons are unevenly distributed so that

the electron density is greatest around the oxygens and lowest around the car-

bon. This uneven charge distribution gives no additional charge so the monopole

moment remains zero. There is also symmetry so that no dipole moment can

come from this either. We are therefore left with a quadrupole moment where

since it is the only term remaining it becomes the dominant electrostatic inter-

action here.

I will write the electrostatic potential out for a CO2 molecule. I choose my

axes such both oxygen atoms are along the z-axis to make calculations easier.

At some observation point
⇀
r =

⇀
x +

⇀
y +

⇀
z we have the Coulomb potential:

Φ
(
⇀
r
)

= 1
4π ε0

[
−
∫ qδ(x′)δ(y′)δ(z′−a)∣∣∣⇀x+⇀

y+
⇀
z−⇀

z
′∣∣∣ d3r′−∫ qδ(x′)δ(y′)δ(z′+a)∣∣∣⇀x+⇀

y+
⇀
z+

⇀
z

′∣∣∣ d3r′ +
∫ 2qδ(x′)δ(y′)δ(z′)∣∣∣⇀x+⇀

y+
⇀
z
∣∣∣ d3r′

]
=

= 1
4π ε0

[
−
∫ qδ(z′−a)∣∣∣⇀x+⇀

y+
⇀
z−⇀

z
′∣∣∣ dz′ −

∫ qδ(z′+a)∣∣∣⇀x+⇀
y+

⇀
z+

⇀
z

′∣∣∣ dz′ + 2q∣∣∣⇀x+⇀
y+

⇀
z
∣∣∣
]

=

= 1
4π ε0

[
− q∣∣∣⇀x+⇀

y+
⇀
z−aẑ

∣∣∣ − q∣∣∣⇀x+⇀
y+

⇀
z+aẑ

∣∣∣ + 2q∣∣∣⇀x+⇀
y+

⇀
z
∣∣∣
]

Φ
(
⇀
r
)

= q
4π ε0

[
2√

x2+y2+z2
− 1√

x2+y2+(z−a)2
− 1√

x2+y2+(z+a)2

]
Taking x = 0 and looking at just the y-z plane we have:

Φ
(
⇀
r
)

= q
4π ε0

[
2√
y2+z2

− 1√
y2+(z−a)2

− 1√
y2+(z+a)2

]
We can find the electric field simply by taking the negative gradient of this

potential.
⇀

E
(
⇀
r
)

= −∇Φ
(
⇀
r
)

=

= − q
4π ε0

[
ŷ

(
− 2y

(y2+z2)
3
2

+ y

(y2+z2+a2−2a z)
3
2

+ y

(y2+z2+a2+2a z)
3
2

)
+

ẑ

(
− 2z

(y2+z2)
3
2

+ z−a
(y2+z2+a2−2a z)

3
2

+ z+a

(y2+z2+a2+2a z)
3
2

)]
For comparison we also calculated the field of a CO2 molecule in ADF.
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Figure 1.1: The electric potential and field of a CO2 molecule

Figure 1.2: The electric potential of a CO2 molecule as calculated using ADF.
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Figure 1.3: The π orbitals in in benzene. Top left and right are degenerate
states.

At around 2 angstroms away we see that the potential lines are nearly

identical. This is a reasonable way to model benzene’s potential energy and

electric field because of the similar symmetry of both systems. We can look into

how this potential and field give rise to the isomers that pairs of benzene form.

The quadrupole moment of the benzene molecule comes from the π orbitals

where we have two more negative faces and the outer ring of hydrogens are left

with less negative charge. This forms a symmetric but uneven distribution

of charge where the monopole and dipole moments go to zero leaving only a

quadrupole moment. A ring of benzene’s π orbitals are not quite as simple as

the CO2 molecule since benzene’s π orbitals are torus shaped and they hold the

greatest net negative charge.

10
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Figure 1.4: Left. Parallel displaced isomer with a biding energy of 0.12994788eV.
and Right. T-shaped isomer with a binding energy of 0.12749058eV.

1.3.2 Benzene-Benzene Interactions

Benzene-benzene interactions can be thought of as quadrupole-quadrupole in-

teractions as we have discussed. For all sizes of plain benzene clusters we see

both T-shaped and parallel displaced geometries. With the aluminum and vana-

dium benzene clusters we see almost no T-shaped bonding, but rather that most

of the benzenes face the metal ion core. This is expected for aluminum since

it is positively charged so the net negative π orbitals on the benzene faces are

attracted to the core so it is no mystery why they face the center in this case.

There is also a π stacking benzene-benzene interaction as well as the others,

however that is primarily driven by hydrophobic effects and is not of conse-

quence for our theoretical investigations.

Sandwich structures are formed in organometallic molecules in which a tran-

sition metal atom is “sandwiched” between two benzene, or other aromatic

molecules. The term sandwich comes from the geometric structure of ferrocene

in which two aromatic cyclopentadiene molecules forms such a compound around

11
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an Iron atom. [2] Since then there have been many different transition metals

(like chromium, vanadium, manganese, etc. ) that have been found to form this

sandwich structure just as with iron. [5, 6, 7] In order for this to occur, there is

covalent bonding between the metal and the benzene molecule. The V +(Bz)2

molecule is a particularly well known example of such a sandwich compound.

1.4 DFT

In quantum mechanics we learn about the Schrödinger equation where we

take complete eigenstates to the Hamiltonian and use it to find the energy

eigenvalues:

H|Ψ〉 = E|Ψ〉

We can reverse this equation and take a good estimation for the energy of a

system and find a model Hamiltonian for the ground state energy.

(T + U + V )|Ψ〉 = H|Ψ〉

This model Hamiltonian may be operated on the system’s wavefunction to

get a new lower energy eigenvalue that is closer to the true ground state energy

of the system. The variational method is the method by which this process

is repeated to get a closer and closer approximation to the true energy of the

system.

Density Functional Theory (DFT) picks up where the variational method leaves

off, focused on the issue that the wavefunction is very difficult to solve exactly

for a system larger than a few particles. It can be calculated by hand for a

single hydrogen atom, however any larger molecule or even an atom with p, or

d electron orbitals can be mathematically intense. In theory the full solution

could be calculated for these large systems, however the different degrees of

freedom combined with the different spins, densities, and geometries make this

12
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calculation practically impossible currently (even for a supercomputer). We

therefore apply Density Functional Theory wherein we can calculate the energies

as well as the other properties simply by using electron density, and determining

the exchange and correlation energy using functionals to find the converged

charge density. Once the charge density is found, the forces on the atoms may

be evaluated, and the lowest energy geometry may be determined.

The normal quantum physics approach to solving the ground state energy for a

system is by taking a Hamiltonian and operating that on a wavefunction to get

the energy eigenvalues. By taking into account every particle, interaction, and

orientation of an atom we can get a total wavefunction with which to operate the

Hamiltonian to operate on. DFT is the idea that this process can be reversed

using the variational method to get a better Hamiltonian. The start of this

came in 1927 by Enrico Fermi and Llewellyn Thomas who used the electron

density dependent wave functional across the atoms in a system to minimize

the energy instead of the full wavefunction. (here we call a function of another

function a functional so as to distinguish it from a function of purely variables)

Ψ⇀

k

(
⇀
r 1,

⇀
r 2, . . . ,

⇀
r n

)
= Ψ⇀

k

(
n
(
⇀
r
))

This is made possible because the electron density while only giving one

solution at any given point contains implicit information about the system as

a whole. By sacrificing some accuracy, this method made calculating the wave-

function possible for more complex systems. Not only energy, but also other

characteristics of these molecules could be calculated now with fairly high ac-

curacy simply due to the reduction of the number of variables and interactions.

The probability of finding a fermion in a state Ψi (within a canonical ensemble)

can be found by taking the Boltzmann factor of the energy in that state, and

then multiplying by a normalization factor of one over the partition function

(using β = 1
kBT

).

13
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Pi = 1
ZC
e−βEi whereZC =

∑
i e
−βEi

The electron density operator may therefore be written by taking a weighted

sum of the Boltzmann factors with a unity operator for each state and then

multiplying by that same normalization factor of one over the partition function.

ρ = 1
ZC

∑
i e
−βEi |Ψi〉〈Ψi|

This density operator can then be made into a matrix whose elements are:

〈x1, x2, . . . , xN |ρ|x′1, x′2, . . . , x′N 〉 = Ψ∗ (x1, x2, . . . , xN ) Ψ (x′1, x
′
2, . . . , x

′
N )

We may rewrite the left side of this equation like a function:

ρ (x1, x2, . . . , xN ;x′1, x
′
2, . . . , x

′
N ) = Ψ∗ (x1, x2, . . . , xN ) Ψ (x′1, x

′
2, . . . , x

′
N )

Now if we take the expectation value of some observable in our system, I

will call it A, we get

〈A〉 =
∫
dx1

∫
dx2 . . .

∫
dxNΨ∗ (x1, x2, . . . , xN )A Ψ (x1, x2, . . . , xN )

A as an observable can be pulled out from between the states here and we

will be left with

〈A〉 =
∫
dx1

∫
dx2 . . .

∫
dxNAρ (x1, x2, . . . , xN ;x1, x2, . . . , xN )

And we may notice that ρ (x1, x2, . . . , xN ;x1, x2, . . . , xN ) are the diagonal

matrix components of our density matrix.

We may define the single particle density matrix in this way, where we take

the integral over this density matrix with only one non-diagonal component

ρ (x1;x′1) = Const.
∫
dx1

∫
dx2 . . .

∫
dxNρ (x1, x2, . . . , xN ;x′1, x2, . . . , xN )

Rewriting this in terms of the wavefunctions we have:

ρ (x1;x′1) = Const.
∫
dx1

∫
dx2 . . .

∫
dxNΨ∗ (x1, x2, . . . , xN ) Ψ (x′1, x2, . . . , xN )

Now we can notice that if we have direct product states giving rise to these

complete states, we can find that they will contain a normalization factor of 1√
N

each. Lets normalize the wavefunction.

Const.
∫
dx1

∫
dx2 . . .

∫
dxN

1√
N

φ∗ (x1)⊗ φ∗ (x2)⊗ . . .⊗ φ∗ (xN ) 1√
N
φ (x′1)⊗ φ (x2)⊗ . . .⊗ φ (xN ) = 1

14
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Distributing we are left with ones up to the state of x1.

Const.
N

∫
dx1φ

∗ (x1)φ (x′1) = 1

Choosing the case where φ (x′1) is φ (x1) we are

Const.
N = 1

Const. = N

Thus we have found that the normalization constant here is N and we may

write the single particle state as:

ρ (x1;x′1) = N
∫
dx1

∫
dx2 . . .

∫
dxNΨ∗ (x1, x2, . . . , xN ) Ψ (x′1, x2, . . . , xN )

By comparison the single particle Green’s function is:

G
(
⇀
r , t;

⇀
r
′
, t′
)

= G(0)
(
⇀
r , t;

⇀
r
′
, t′
)

+∫
d3x

∫
d3x′

∫
d3τ

∫
d3τ ′G(0)

(
⇀
r , t;

⇀
x, τ

)
Σ
(
⇀
x, τ,

⇀
x
′
, τ ′
)
G
(
⇀
x
′
, τ ′;

⇀
r
′
, t′
)

Both of these can be used to reduce the number of variables in the electron

density by one. Green’s Function acts as a delta function when it is integrated

over so that for our density operator we can use it to set two variables equal

under an integration. We may alternatively or simultaneously find matrix el-

ements from our density operator and we can ultimately take the sum of its

diagonal elements to also get a density function of only one variable. We can

then use these in a series to reduce the number of variables one by one to get

a density function that only depends on the position it is measured at (for a

ground state). This is where Hohenberg-Kohn theorem is then implemented to

write the density functional in terms of this electron density.

From this density function we get a functional, and from that we can make our

model Hamiltonian and ultimately a ground state energy estimate. After this

the geometry of the system is manipulated slightly using force field calculations

to attempt to lower the total energy of the system. The whole process is then

repeated for the new system again. This cycle is run for hundreds of iterations

(layered) then the converged energy is taken to be the approximate ground state

15
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energy of the system. The approximation in this case depends on a specified

degree of precision that the program is asked to reach. After the precision is

high enough the resulting energy is taken then to be the ground state energy of

that system.

Density Functional Theory still has some key limitations on its own which is

why there have been several corrections to the energy. The greatest of these was

the exchange correlation correction which gave interactions between the valence

electrons and the molecules’ pseudopotentials (before this it had been assumed

to be a free electron gas) [8, 9]. Recently the there have been improvements

in the dispersion methods accounting for van der Waals forces which are of

critical importance to higher order electrostatic correction terms (i.e. dipoles,

quadrupoles, etc.).

The exchange and correlation (XC) energy correction we used was GGA-PBE

which stands for Generalized Gradient Approximation (specifically the one cre-

ated by Perdew Burke and Ernzerhof). Generalized Gradient Approximation

is an extension of LDA which is the Local Density Approximation method. In

LDA the electron exchange-correlation energy is simply added to the energy of

the system we had before:

(T + U + V + EXC) |Ψ〉 = H|Ψ〉

The dispersion correction we used was the Grimme3 BJDAMP dispersion

method which similarly adds a dispersion correction energy term.

(T + U + V + EXC + Edisp) |Ψ〉 = H|Ψ〉

This particular dispersion correction method is of particular importance to

our system because it has the best accuracy for higher order terms necessary

for multipole moments and interactions (van der Waals forces). As we have dis-

cussed benzene has only an appreciable quadrupole moment, so by implementing

this particular dispersion method we were able to get correct results.

16



www.manaraa.com

Chapter 2

Methods

Initially we had been sent experimental data from our collaborators Professor

Zhixun Luo and co-workers who found that aluminum-benzene and vanadium-

benzene clusters appeared to have magic numbers. Using a custom mass spec-

trometer they found higher counts corresponding to specific numbers of benzenes

for each. It appeared that Al+(Bz)13 was magic as well as the confirmation of

a well known stable sandwich cluster V +(Bz)2.[6] (see fig. 2.1)

We started out trying to get the results others had gotten for plain ben-

zene clusters.[1-3] To get binding energies we first used ADF to find the lowest

energy structure for each cluster. After this we took the energy of the n-1 cluster

and added the energy of a single benzene to it, then took the difference between

that and the n’th benzene’s total energy. This gave us the binding energy for

the plain benzene clusters where we found the similar results as previous studies

for the plain benzene clusters, with Bz13 being a magic number for the plain

cluster. After this we began trying aluminum cations and one benzene on it.

We found that there were several different ways the aluminum could alter the

planar structure of benzene, and accounted this to benzene’s bonding and an-
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Figure 2.1: Mass spectrometer data received from our collaborators Professor
Zhixun Luo and co-workers

tibonding molecular orbitals (because they matched the geometries of what we

saw). Among these the planar structure remained the lowest energy geometry so

we continued with higher numbers of benzenes arranged around the aluminum.

Once we got to around 6 benzenes it became clear that these geometries were

getting too complex to guess correctly on our own so we began using the molec-

ular modeling software Tinker to get force field corrections to the geometries

before running them in ADF.[10] Tinker does not have an aluminum cation in

any of its parameter files, but we found the closest comparison we could find

was a calcium +2 cation (number 354 in oplsaa.prm). This returned the same

structures as we had been getting with ADF for 1 to 7 benzenes so we ran force

field approximations with it many times for each larger structure. We found

several geometries to be common for each structure so we ran those with ADF

and found that they in fact had lower energies than the less common geometries,

except for in 12 13 and 14. In these we found that there were 3 outer benzenes

that ADF kept having trouble finding a place for in the geometry, until we found

the current lowest structure for 13. This was the lowest energy geometry by far,

18



www.manaraa.com

Figure 2.2: Binding energies scaled to see magic numbers

but we had not have gotten it from just force field corrections since the 3 outer

benzenes are all T-bonded to one another. From this two conclusions may be

drawn, one that Tinker was not giving us the true lowest energy structures for

any of the trials, or two that the structure of 13 was unique. We tried the same

process with several of the other structures, however none were affected except

12 and 14. Since the inner “layers” of the 13 structure were similar looking to

the smaller structures we came up with a way to categorize these “layers” of

benzenes. We had found that the first layer (immediately surrounding the alu-

minum cation) was always either 3 or 4 benzenes facing it. The 3 were wrapped

around and we called this the ring isomer whereas the 4 had a lopsided ring

of 3 with a 4th on the free side, we called this a single capped isomer. We

found the next layer for a ring base had two capping benzenes that were often

tilted away from facing the aluminum (see fig. 2.3). The binding energies of

the aluminum-benzene clusters peaked at 13 which after careful reconsideration

and multiple different trial structures we confirmed this result (see fig. 2.2).
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Figure 2.3: Aluminum-benzene clusters
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Figure 2.4: Binding energies scaled to see vanadium-benzene’s peak at 2

For vanadium-benzene clusters, we followed the same method as with aluminum

but in this case we expected a sandwich structure base. We found that our data

agreed with previous papers.[5, 6] For our method of finding larger structures

we used Tinker for force field optimization again but with vanadium we used a

magnesium cation instead which gave us sandwich structure bases as expected

(see fig. 2.5). As for layering, benzene did not appear to prefer discrete angles

as they formed around the sandwich complex, however their distances from the

center were discrete. The binding energies were similar, except for the dispro-

portionately large binding energy of the sandwich complex (see fig. 2.4).

In addition to the binding energies we also found the ionization poten-

tials for both aluminum and vanadium each with their neutral and +2 cation

structures. To do this we first used ADF to get the lowest energy structures

of neutral and +2 cation clusters. Once we obtained these we took the dif-
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Figure 2.5: Vanadium-benzene clusters
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Figure 2.6: Ionization energies

ference between the ground state energies of the neutrals and +1 cations as

well as that between the +1 cations and +2 cations (see fig. 2.2 and 2.4) We

see that in all cases the ionization potential decreases as n increases. We also

looked into the Homo-Lumo gap which is fairly consistent across all n for both

aluminum-benzene and vanadium-benzene clusters.
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Figure 2.7: Homo-Lumo energies
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Chapter 3

Results and Discussion

We confirmed in our study that for clusters of just benzene, 13 is a magic

number. We also have found that 13 is a magic number in aluminum-benzene

and vanadium-benzene clusters as well. The aluminum-benzene clusters are

of particular interest since they do not have a sandwich structure in the core

of the clusters. There are instead 3 to 4 benzenes that form a solvent shell

around the aluminum, which are surrounded by another shell of benzenes.

The distance from the aluminum to the center of each benzene directly sur-

rounding it is around 2.75
◦
A while for vanadium that same distance is 1.72

◦
A.

In vanadium-benzene the sandwich structure is a covalent bond, however in

aluminum-benzene this is not close enough for a covalent bond and instead the

interactions we see appear to be that of a charge transfer complex. We see that

if we compare the binding energies of plain benzenes with the binding energies

of benzene aluminum we see that aluminum’s is greater for the smaller struc-

tures (see in fig 2.2). Since these binding energies are relative to each system

we can’t just take this at face value, but instead it is important to also look at

the geometry of the benzene with itself.
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We found more and more that the benzene molecules would form in specific ways

around the core metal atom (especially apparent in Vanadium), so we came up

with a way of classifying these common structures by the use of what we call a

geometric basin plot. On this we have plotted on one axis the angle that each

benzene face is tilted away from the central metal atom, and on the other axis

their distance from the central metal atom. In this we have assumed that the

benzene molecules are each more or less planar and that the area vector of that

plane can be determined from the cross product between two vectors in that

plane; we called this
⇀
u i. We took the average positions of each atom in the ben-

zene to be the central position, and comparing that position with the position of

the central metal gave us our radial vector
⇀
r i. Using these two vectors we could

then easily find the angle between them by taking their dot product and their

lengths (
⇀
r i ·

⇀
u i =

∣∣∣⇀r i∣∣∣ |⇀u i| cos θ). This alone could produce several different

results for example if they pointed in exact opposite directions then we would

see 180◦ instead of 0◦ so for angles greater than 90◦ we just subtracted 90◦.

We have plotted the radial vector’s length, versus the angle we found between

the radial and normal area vectors for each benzene in each system (see fig. 3.1).

This geometric basin plot gives us a way of displaying a key point to our

results, that the number of benzenes around the metal form into solvent shells. It

also shows that these shells each affect the geometry of the innermost “shell” of

benzene molecules in aluminum-benzene clusters. In vanadium-benzene clusters

there is no effect on the sandwich structure by larger solvent shells. We also

notice that the angles are much more dispersed in vanadium than in aluminum

which plainly means that the solvent shells that form around aluminum prefer

specific angles while the vanadium cluster’s benzenes do not. This finding means

that the benzene-benzene interactions must play some role in the formation of
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Figure 3.1: Definitions of vectors used in calculation of the angle θi for each
benzene in a given cluster

the aluminum-benzene solvent shells.

To get the benzene-benzene basin plots we again found the radial vector to the

center of each benzene and found their area normal vectors again. This time

however, we compared pairs of benzenes in each geometry, one centered at
⇀
r i

and one centered at
⇀
r j . We found a vector going from the center of one to

the center of the other and called this
⇀
r i j =

⇀
r i −

⇀
r j . After this we found

the normal area vector of each benzene using the same process as before, then

calculated the angle that each of these made with
⇀
r i j . We were then able to

plot these angles against the length of the distance between benzenes ri j (see

fig. 3.5). We also found the angle between the normal area vectors themselves so

that we could then categorize which pairs were truly parallel displaced isomers

and which were false positives (an example of one of these may be seen in fig.

3.4). Looking at the normal area vectors in fig. 3.4 we see that they are about

90◦ apart while in a true parallel displaced we would have around 0◦. This is the
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Figure 3.2: Geometric basin plot of each angle θi against the distance to the
center ri
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Figure 3.3: T and parallel displaced isomers with the vectors we used to find
the angles θi and θj for each pair of benzenes in a given cluster

second method of categorization. Although important, the angle plots were

difficult to pick out T and parallel displaced isomers from visually so we found

a new value that is the difference of the two angles in a given interaction pair.

The way to interpret these is that the angle difference should be around 90◦

for the T isomers, and 0◦ for the parallel displaced (along with the additional

constraints against the false positives). Since the basin plots did not show all

of this data as cleanly, we took a smooth density histogram for fig. 3.6 where

we plotted this angle difference against ri j .

The density plots show that the T isomer is definitely dominant in the

clusters overall, however this may have some influence based on the tendency

to face the center of the cluster. What can be said of the left graphs is that

there are discrete basins that the benzenes form which supports the claim that

there are solvent shells forming around the metal core. Notice in the aluminum-

benzene all data plot that near about 5
◦
A there is a high density near an angle

difference of zero. This is showing that the closest benzenes in the structure all
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Figure 3.4: A false parallel displaced isomer by our first method of categoriza-
tion. This is accounted for by our second method.

Figure 3.5: Basin plots of the angles θi and θj against the distance between the
pair of benzenes ri j
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Figure 3.6: Smooth density histograms of the difference in the two angles θi j
against the distance between the pair of benzenes ri j
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have nearly zero angle difference. Looking at the plot of only T and pd isomers,

we see that these vanish indicating that while the angles they make with their

common distance vector are similar, their area vectors still point in different

directions. This is our “fake” parallel displaced isomer as seen in fig. 3.4 and

with so many of these in aluminum near one another we may guess that these

are the ones surrounding the aluminum core. After checking, we confirmed that

these are actually the first solvent shell that forms around the aluminum.

We also modified our method above to find just the distance between each

pair of benzenes across all clusters. We found that these distances were sectioned

off into relatively gaussian distributions (see fig. 3.7). This helps support the

claim that the benzenes are forming discrete geometric shells around the core.

The fact that the first peak and second peak have a clear separation means

that we can investigate all of those below around 6.7
◦
A for nearest-neighbor

interactions between benzenes.

From the distributions of the The amounts by which the counts of the lowest

peak increase for each cluster size can tell us how densely packed our clusters

are. To get these we first found the total number of benzenes within a range

of 0-6.7
◦
A for each cluster, then found the change in that total from the n-1

cluster to the n cluster. For comparison the change in total number of possible

interactions would be a linear trend; starting at 3 it would be 2, at 4 would be

3 and so on. We plotted these differences in fig. 3.8 and found that the overall

changes in density of the clusters strongly resembles the binding energies of

those clusters. This gives us another way of showing that 13 is a magic number

in each of these clusters.

With this we can reason that clusters who have more benzenes that are

closer to one another and therefore have greater density. With a greater density

here we see a direct correlation to binding energy of our system. The peak
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Figure 3.7: Histograms of all the ri j for each cluster type.
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Figure 3.8: The changes in nearest benzenes against cluster size
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around 13 is common in each which is no coincidence if the binding energy is

strongest in 13, then the packing density should also be at a local maximum.

It is also worth mentioning that this not only resembles the peaks at 13 but

also the smaller peak at 11 in aluminum-benzene clusters and several other

characteristics of the binding energy graphs as well.
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Chapter 4

Conclusion

We have confirmed experimental findings, that 13 is a magic number in

aluminum-benzene clusters as well as in vanadium-benzene clusters. There

are solvent shells that are apparent in both sets of clusters which give rise to

these highly stable species. In aluminum-benzene clusters each benzene is only

interacting from a distance with the aluminum and the system is like that of

a charge transfer complex. In vanadium-benzene clusters the vanadium center

forms covalent bonds with the two sandwich benzenes directly surrounding it.

The rest of the benzenes form around this sandwich structure all facing the

sandwich. In general conclusions cannot be drawn from only this because the

geometry must be taken into account for each cluster, however some general

conclusions may be drawn still. For example, it appears that in the sandwich

structure the vanadium cation remains overall positive in smaller clusters to

make the other benzenes that form around it face toward it. In larger clusters

however, we see that the preference is not actually towards the center but to-

wards the hydrogens. This means that the sandwich structure must quench the

vanadium’s field appreciably so that the quadrupole-quadrupole interactions of
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the benzenes has a visible effect still.

These geometries ultimately give rise to the magic numbers appearing in the

binding energies for each set of clusters. The link between the geometry of the

system and the binding energies can be best described by the density of the

benzenes in each cluster size. This is found by the difference in nearest ben-

zene count between each cluster size and has been shown to closely resemble the

binding energies. Even though the solvent shells do not form the same way for

aluminum and vanadium, these magic numbers in the geometry indicates that

there is something that is even more fundamental about this interaction. The

study of metal benzene clusters can help us understand the fundamental interac-

tions between benzene molecules in a way that combines experiment and theory.
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